Uncategorized

Climate impacts on human health

By Morgen Makombo Sikwila

A warmer climate is expected to increase the risk of illnesses and death from extreme heat and poor air quality.

Morgen Makombo Sikwila.

Climate change will likely increase the frequency and strength of extreme events (such as floods, droughts, and storms) that threaten human health and safety.

Climate changes may expose more people to diseases.

Some groups of people (e.g., the very young and the very old) are especially vulnerable to health impacts.

Climate change is a significant threat to the health of people in developing countries. Climate change can affect human health in two main ways: first, by changing the severity or frequency of health problems that are already affected by climate or weather factors; and second, by creating unprecedented or unanticipated health problems or health threats in places or times of the year where they have not previously occurred.

Climate change image.

Poor nations are vulnerable to the health impacts associated with climate change, but some populations will be especially affected. These groups include the poor, some communities, children and pregnant women, older adults, vulnerable occupational groups, people with disabilities, and people with medical conditions. The impacts of climate change include warming temperatures, changes in precipitation, increases in the frequency or intensity of some extreme weather events, and rising sea levels. These impacts threaten our health by affecting the food we eat, the water we drink, the air we breathe, and the weather we experience.

The severity of these health risks will depend on the ability of public health and safety systems to address or prepare for these changing threats, as well as factors such as an individual’s behavior, age, gender, and economic status. Impacts will vary based on a where a person lives, how sensitive they are to health threats, how much they are exposed to climate change impacts, and how well they and their community are able to adapt to change.

People in developing countries may be the most vulnerable to health risks globally, but climate change poses significant threats to health even in wealthy nations. Certain populations, such as children, pregnant women, older adults, and people with low incomes, face increased risks.

Warmer average temperatures will lead to hotter days and more frequent and longer heat waves.These changes will lead to an increase in heat-related deaths—reaching as much as thousands to tens of thousands of additional deaths each year by the end of the century during summer months in poor countries.

These deaths will not be offset by the smaller reduction in cold-related deaths projected in the winter months. However, adaptive responses, such as wider use of air conditioning, are expected to reduce the projected increases in death from extreme heat.

Exposure to extreme heat can lead to heat stroke and dehydration, as well as cardiovascular, respiratory, and cerebrovascular disease. Excessive heat is more likely to affect populations in northern latitudes where people are less prepared to cope with excessive temperatures. Certain types of populations are more vulnerable than others: for example, outdoor workers, student athletes, and homeless people tend to be more exposed to extreme heat because they spend more time outdoors. Low-income households and older adults may lack access to air conditioning which also increases exposure to extreme heat. Additionally, young children, pregnant women, older adults, and people with certain medical conditions are less able to regulate their body temperature and can therefore be more vulnerable to extreme heat.

Climate change is projected to increase the vulnerability of urban populations to heat-related health impacts in the future. Heat waves are also often accompanied by periods of stagnant air, leading to increases in air pollution and associated health effects

Changes in the climate affect the air we breathe both indoors and outdoors. Warmer temperatures and shifting weather patterns can worsen air quality, which can lead to asthma attacks and other respiratory and cardiovascular health effects. Wildfires, which are expected to continue to increase in number and severity as the climate changes, create smoke and other unhealthy air pollutants. Rising carbon dioxide levels and warmer temperatures also affect airborne allergens, such as ragweed pollen. Climate change may make it even harder for states to meet these standards in the future, exposing more people to unhealthy air.

Increases in Ozone

Scientists project that warmer temperatures from climate change will increase the frequency of days with unhealthy levels of ground-level ozone, a harmful air pollutant, and a component in smog.

People exposed to higher levels of ground-level ozone are at greater risk of dying prematurely or being admitted to the hospital for respiratory problems.

Ground-level ozone can damage lung tissue, reduce lung function, and inflame airways. This can aggravate asthma or other lung diseases. Children, older adults, outdoor workers, and those with asthma and other chronic conditions. Stagnant air tends to increase the formation of ozone, climate change is likely to increase levels of ground-level ozone in already-polluted areas and increase the number of days with poor air quality.The higher concentrations of ozone due to climate change may result in tens to thousands of additional ozone-related illnesses and premature deaths per year by 2030, assuming no change in projected air quality policies.

Particulate matter is the term for a category of extremely small particles and liquid droplets suspended in the atmosphere. Fine particles include those smaller than 2.5 micrometers (about one ten-thousandth of an inch). Some particulate matter such as dust, wildfire smoke, and sea spray occur naturally, while some is created by human activities such as the burning of fossil fuels to produce energy. These particles may be emitted directly or may be formed in the atmosphere from chemical reactions of gases such as sulfur dioxide, nitrogen dioxide, and volatile organic compounds.

Inhaling fine particles can lead to a broad range of adverse health effects, including lung cancer, chronic obstructive pulmonary disease (COPD), and cardiovascular diseases.

Climate change is expected to increase the number and severity of wildfires. Particulate matter from wildfire smoke can often be carried very long distances by the wind, affecting people who live far from the source of this air pollutant.

Older adults are particularly sensitive to short-term particle exposure, with a higher risk of hospitalization and deaths. Outdoor workers like firefighters can also have high exposure. Due to the complex factors that influence atmospheric levels of fine particulate matter, scientists do not yet know whether climate change will increase or decrease particulate matter concentrations across nations. Particulate matter can be removed from the air by rainfall, and precipitation is expected to increase in quantity though not necessarily frequency.

 Climate-related changes in stagnant air episodes, wind patterns, emissions from vegetation and the chemistry of atmospheric pollutants also affect particulate matter levels. Changes in allergens and Asthma triggers

allergic illnesses, including hay fever, affect about one-third of the world population, and millions have been diagnosed with asthma. Climate change may affect allergies and respiratory health.

Increases in the frequency or severity of some extreme weather events, such as extreme precipitation, flooding, droughts, and storms, threaten the health of people during and after the event.The people most at risk include young children, older adults, people with disabilities or medical conditions, and the poor. Extreme events can affect human health in a number of ways.

Damaged roads and bridges, disrupting access to hospitals and pharmacies. Some individuals with disabilities may also be disproportionally affected if they are unable to access health services, have difficulty in understanding or receiving warnings of impending danger, or have limited ability to communicate their needs.

Vectorborne diseases are illnesses that are transmitted by disease vectors, which include mosquitoes, ticks, and fleas. These vectors can carry infectious pathogens, such as viruses, bacteria, and protozoa, from animals to humans. Changes in temperature, precipitation, and extreme events increases the geographic range of diseases spread by vectors and can lead to illnesses occurring earlier in the year.

The geographic range of ticks that carry Lyme disease is limited by temperature. As air temperatures rise, ticks are likely to become active earlier in the season, and their range is likely to continue to expand in poor, developing countries. Typical symptoms of malaria disease include fever, headache, fatigue, and joint pains. Mosquitoes thrive in certain climate conditions and can spread diseases. Extreme temperatures—too cold, hot, wet, or dry—influence the location and number of mosquitoes that transmit West Nile virus. Millions people are infected in poor countries. The spread of climate-sensitive diseases depends on both climate and non-climate factors such as land use, socioeconomic and cultural conditions, pest control, access to health care, and human responses to diseases.The risks for climate-sensitive diseases can be much higher in poorer countries that have less capacity to prevent and treat illness.

 Human infections can occur from a bite of a mosquito that has previously bitten an infected bird. Rising temperature, changing precipitation patterns, and a higher frequency of extreme weather events are likely to influence the distribution and abundance of mosquitoes that transmit malaria.

People can become ill if exposed to contaminated drinking or recreational water. Climate change increases the risk of illness through increasing temperature, more frequent heavy rains and runoff, and the effects of storms. Health impacts may include gastrointestinal illness like diarrhea, effects on the body’s nervous and respiratory systems, or liver and kidney damage.

Climate impacts can affect exposure to waterborne pathogens (bacteria, viruses, and parasites such as Cryptosporidium and Giardia); toxins produced by harmful algal and cyanobacterial blooms in the water; and chemicals that end up in water from human activities.

Changing water temperatures mean that waterborne Vibrio bacteria and harmful algal toxins will be present in the water at different times of years, or in places where they were not previously threats.

Runoff and flooding resulting from increases in extreme precipitation, cyclones, and storm surge will increasingly contaminate water bodies used for recreation (such as lakes and beaches), shellfish harvesting waters, and sources of drinking water.

Extreme weather events and storm surges can damage or exceed the capacity of water infrastructure (such as drinking water or wastewater treatment plants), increasing the risk that people will be exposed to contaminants.

Water resource, public health, and environmental agencies provide many public health safeguards to reduce risk of exposure and illness even if water becomes contaminated. These include water quality monitoring, drinking water treatment standards and practices, beach closures, and issuing advisories for boiling drinking water and harvesting shellfish.

Climate change and the direct impacts of higher concentrations of carbon dioxide in the atmosphere are expected to affect food safety and nutrition. Extreme weather events can also disrupt or slow the distribution of food.

Higher air temperatures can increase cases of Salmonella and other bacteria-related food poisoning because bacteria grow more rapidly in warm environments. These diseases can cause gastrointestinal distress and, in severe cases, death. Practices to safeguard food can help avoid these illnesses even as the climate changes.

Climate change will have a variety of impacts that may increase the risk of exposure to chemical contaminants in food. For example, higher sea surface temperatures will lead to higher mercury concentrations in seafood, and increases in extreme weather events will introduce contaminants into the food chain through stormwater runoff.

Higher concentrations of carbon dioxide in the air can act as a “fertilizer” for some plants, but lowers the levels of protein and essential minerals in crops such as wheat, rice, and potatoes, making these foods less nutritious.

Extreme events, such as flooding and drought, create challenges for food distribution if roads and waterways are damaged or made inaccessible.

Pathogen load can increase due to temperature and precipitation extremes. Climate can alter weed, insect, and fungal populations, and increase pesticide use. The food system involves a network of interactions with our physical and biological environments as food moves from production to consumption, or from “farm to table.” Rising Carbon dioxide and climate change affect the quality and distribution of food, with subsequent effects on food safety and nutrition.

Any changes in a person’s physical health or surrounding environment can also have serious impacts on their mental health. In particular, experiencing an extreme weather event can cause stress and other mental health consequences, particularly when a person loses loved ones or their home.

Individuals with mental illness are especially vulnerable to extreme heat; studies have found that having a pre-existing mental illness tripled the risk of death during heat waves. People taking medication for mental illness that makes it difficult to regulate their body temperature are particularly at risk.

Even the perceived threat of climate change (for example from reading or watching news reports about climate change) can influence stress responses and mental health.

Some groups of people are at higher risk for mental health impacts, such as children and older adults, pregnant and post-partum women, people with pre-existing mental illness, people with low incomes, and emergency workers.

Some groups of people are more vulnerable than others to health risks from climate change. Three factors contribute to vulnerability: sensitivity, which refers to the degree to which people or groups are affected by a stressor such as higher temperatures; exposure, which refers to physical contact between a person and a stressor; and adaptive capacity, which refers to an ability to adjust to or avoid potential hazards. For example, while older adults are sensitive to extreme heat, an older person living in an air-conditioned apartment won’t be exposed as long as she stays indoors, and as long as she can afford to pay for the electricity to run the air conditioner. Her ability take these actions is a measure of her adaptive capacity.

Some populations are especially vulnerable to climate health risks due to particular sensitivities, high likelihood of exposure, low adaptive capacity, or combinations of these factors.

Communities of color (including Indigenous communities as well as specific racial and ethnic groups), low income and the poor immigrants, face disproportionate vulnerabilities due to a wide variety of factors, such as higher risk of exposure, socioeconomic and educational factors that affect their adaptive capacity, and a higher prevalence of medical conditions that affect their sensitivity.

Children are vulnerable to many health risks due to biological sensitivities and more opportunities for exposure (due to activities such as playing outdoors). Pregnant women are vulnerable to heat waves and other extreme events, like flooding.

Older adults are vulnerable to many of the impacts of climate change. They may have greater sensitivity to heat and contaminants, a higher prevalence of disability or preexisting medical conditions, or limited financial resources that make it difficult to adapt to impacts.

Occupational groups, such as outdoor workers, paramedics, firefighters, and transportation workers, as well as workers in hot indoor work environments, will be especially vulnerable to extreme heat and exposure to vectorborne diseases.

People with disabilities can be very vulnerable during extreme weather events, unless communities ensure that their emergency response plans specifically accommodate them.

People with chronic medical conditions are typically vulnerable to extreme heat, especially if they are taking medications that make it difficult to regulate body temperature. Power outages can be particularly threatening for people reliant on certain medical equipment.

Other health impacts

Other linkages exist between climate change and human health. Changes in temperature and precipitation, as well as droughts and floods affect agricultural yields and production. In some regions of the world, these impacts may compromise food security and threaten human health through malnutrition, the spread of infectious diseases, and food poisoning. The worst of these effects are projected to occur in developing countries, among vulnerable populations. Declines in human health in other countries can affect developed nations through trade, migration, and immigration and has implications for national security.

Although the impacts of climate change have the potential to affect human health around the world, there is a lot we can do to prepare for and adapt to these changes—such as establishing early warning systems for heat waves and other extreme events, taking steps to reduce vulnerabilities among populations of concern, raising awareness among healthcare professionals, and ensuring that infrastructure is built to accommodate anticipated future changes in climate. Understanding the threats that climate change poses to human health is the first step in working together to lower risks and be prepared.

*Morgen MakomboSikwila*

*MSc Peaceand Governance*

*BSc Counselling*

*Diploma in Environmental Health*

*Certificate in Marketing Management*

*email: morgensikwilam@gmail.com*

*Phone Number: 0772823282*

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button